IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4614-5128-0_10.html
   My bibliography  Save this book chapter

ASAP: An Eigenvector Synchronization Algorithm for the Graph Realization Problem

In: Distance Geometry

Author

Listed:
  • Mihai Cucuringu

    (Princeton University, PACM)

Abstract

We review a recent algorithm for localization of points in Euclidean space from a sparse and noisy subset of their pairwise distances. Our approach starts by extracting and embedding uniquely realizable subsets of neighboring sensors called patches. In the noise-free case, each patch agrees with its global positioning up to an unknown rigid motion of translation, rotation, and possibly reflection. The reflections and rotations are estimated using the recently developed eigenvector synchronization algorithm, while the translations are estimated by solving an overdetermined linear system. In other words, to every patch, there corresponds an element of the Euclidean group Euc(3) of rigid transformations in $${\mathbb{R}}^{3}$$ , and the goal is to estimate the group elements that will properly align all the patches in a globally consistent way. The algorithm is scalable as the number of nodes increases, and can be implemented in a distributed fashion. Extensive numerical experiments show that it compares favorably to other existing algorithms in terms of robustness to noise, sparse connectivity and running time.

Suggested Citation

  • Mihai Cucuringu, 2013. "ASAP: An Eigenvector Synchronization Algorithm for the Graph Realization Problem," Springer Books, in: Antonio Mucherino & Carlile Lavor & Leo Liberti & Nelson Maculan (ed.), Distance Geometry, edition 127, chapter 0, pages 177-195, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4614-5128-0_10
    DOI: 10.1007/978-1-4614-5128-0_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4614-5128-0_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.