IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4614-3810-6_8.html
   My bibliography  Save this book chapter

Ramanujan’s Forty Identities for the Rogers–Ramanujan Functions

In: Ramanujan's Lost Notebook

Author

Listed:
  • George E. Andrews

    (The Pennsylvania State University, Department of Mathematics)

  • Bruce C. Berndt

    (University of Illinois at Urbana–Champaign, Department of Mathematics)

Abstract

The Rogers-Ramanujan identities are perhaps the most important identities in the theory of partitions. They were first proved by L.J. Rogers in 1894 and rediscovered by Ramanujan prior to his departure for England. Since that time, they have inspired a huge amount of research, including many analogues and generalizations. Published with the lost notebook is a manuscript providing 40 identities satisfied by these functions. In contrast to the Rogers-Ramanujan identities, the identities in this manuscript are identities between the two Rogers-Ramanujan functions at different powers of the argument. In other words, they are modular equations satisfied by the functions. The theory of modular forms can be invoked to provide proofs, but such proofs provide us with little insight, in particular, with no insight on how Ramanujan might have discovered them. Thus, for nearly a century, mathematicians have attempted to find “elementary” proofs of the identities. In this chapter, “elementary” proofs are given for each identity, with the proofs of the most difficult identities found only recently by Hamza Yesilyurt.

Suggested Citation

  • George E. Andrews & Bruce C. Berndt, 2012. "Ramanujan’s Forty Identities for the Rogers–Ramanujan Functions," Springer Books, in: Ramanujan's Lost Notebook, edition 127, chapter 8, pages 217-335, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4614-3810-6_8
    DOI: 10.1007/978-1-4614-3810-6_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4614-3810-6_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.