IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4613-8177-8_11.html
   My bibliography  Save this book chapter

A Semantically Meaningful Characterization of Reducible Flowchart Schemes

In: Selected Papers

Author

Listed:
  • Calvin C. Elgot

    (IBM Thomas J. Watson Research Center, Mathematical Sciences Department)

  • John C. Shepherdson

    (University of Bristol, School of Mathematics)

Abstract

A “scalar” flowchart scheme, i.e. one with a single begin “instruction” is reducible iff its underlying flowgraph is reducible in the sense of Cocke and Allen or Hecht and Ullman. We characterize the class of reducible scalar flowchart schemes as the smallest class containing certain members and closed under certain operations (on and to flowchart schemes). These operations are “semantically meaningful” in the sense that operations of the same form are meaningful for “the” functions (or partial functions) computed by interpreted flowchart schemes; moreover, the schemes and the functions “are related by a homomorphism.” By appropriately generalizing “flowgraph” to (possibly) several begins (i.e. entries) we obtain a class of reducible “vector” flowchart schemes which can be characterized in a manner analogous to the scalar case but involving simpler more basic operations (which are also semantically meaningful). A significant side effect of this semantic viewpoint is the treatment of multi-exit flowchart schemes on an equal footing with single exit ones.

Suggested Citation

  • Calvin C. Elgot & John C. Shepherdson, 1982. "A Semantically Meaningful Characterization of Reducible Flowchart Schemes," Springer Books, in: Stephen L. Bloom (ed.), Selected Papers, pages 327-359, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4613-8177-8_11
    DOI: 10.1007/978-1-4613-8177-8_11
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4613-8177-8_11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.