IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4613-3754-6_4.html
   My bibliography  Save this book chapter

Some Properties in Fuzzy Convex Sets

In: Advances in Fuzzy Sets, Possibility Theory, and Applications

Author

Listed:
  • Liu Ying-Ming

    (Sichuan University, Department of Mathematics)

Abstract

In the basic and classical paper [10], where the important concept of fuzzy set was first introduced, L. A. Zadeh developed a basic framework to treat mathematically the fuzzy phenomena or systems which, due to intrinsic indefiniteness, cannot themselves be characterized precisely. He pays special attention to the investigation on the fuzzy convex sets which consists of nearly the second half of the space of his paper. The main results on fuzzy convex sets given in [10] are summarized as follows: (1) The separation theorem; and (2) The theorem on the shadows of fuzzy convex sets. The revised correct version of the separation theorem has been given in [9] by employing induced fuzzy topology. Using the concept of fuzzy hyperplane, Lowen has established some further separation theorem for fuzzy convex sets [6]. Concerning the theorem of shadow of fuzzy convex sets, Zadeh has further investigated in [11]. But in this respect, there exists still some drawbacks which will be shown via a counterexample in the present paper. Perhaps the lack of fuzzy topological assumption in the above mentioned results leads to the appearance of these shortcomings. Such a situation seems to be only natural in the early stage of development of the fuzzy set theory. Adding some assumptions about fuzzy topology, we are able to yield several positive results on the shadows of fuzzy convex sets. Finally we shall give some simple and direct proofs of two theorems that describe the relationships between the fuzzy convex cones and the fuzzy linear subspaces and that originally appeared in [6]. The present proofs do not appeal to the representation theorem established in [6] by R. Lowen.

Suggested Citation

  • Liu Ying-Ming, 1983. "Some Properties in Fuzzy Convex Sets," Springer Books, in: Paul P. Wang (ed.), Advances in Fuzzy Sets, Possibility Theory, and Applications, pages 37-47, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4613-3754-6_4
    DOI: 10.1007/978-1-4613-3754-6_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4613-3754-6_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.