IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4613-1055-6_4.html
   My bibliography  Save this book chapter

Simple Applications of Generalized Functions in Theoretical Physics: The Case of Many–Body Perturbation Expansions

In: Generalized Functions, Convergence Structures, and Their Applications

Author

Listed:
  • H. F. G. Keiter

    (Universität Dortmund, Institut für Physik)

Abstract

Let Ĥ = Ĥ0 + $${\rm{\hat V}}$$ be a self-adjoint operator, bounded from below and defined on a Hilbert space, representing the Himiltonian of an interacting physical system, and Ĥ0 the one for a simpler system with known spectrum and eigenstates. Typically, physicists want to evaluate the (grand–) canonical partition function Tr exp(–βĤ), where β-1 > 0 is Boltzmann’s constant times temperature, and Tr stands for the trace, in powers of $${\rm{\hat V}}$$ . For a fixed power of $${\rm{\hat V}}$$ , the expansion is unique and consists of a sum of terms, interpreted as physical processes. An individual term can be calculated only if generalized functions are introduced. This is a somewhat arbitrary procedure, however. Different schemes are presented an partial summations of individual terms through all the orders of the expansion in $${\rm{\hat V}}$$ are discussed.

Suggested Citation

  • H. F. G. Keiter, 1988. "Simple Applications of Generalized Functions in Theoretical Physics: The Case of Many–Body Perturbation Expansions," Springer Books, in: Bogoljub Stanković & Endre Pap & Stevan Pilipović & Vasilij S. Vladimirov (ed.), Generalized Functions, Convergence Structures, and Their Applications, pages 47-55, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4613-1055-6_4
    DOI: 10.1007/978-1-4613-1055-6_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4613-1055-6_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.