IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4613-0303-9_15.html
   My bibliography  Save this book chapter

Combinatoral Optimization in Clustering

In: Handbook of Combinatorial Optimization

Author

Listed:
  • Boris Mirkin

    (Rutgers University, Center for Discrete Mathematics & Theoretical Computer Science (DIMACS)
    Central Economics-Mathematics Institute (CEMI))

  • Ilya Muchnik

    (Rutgers University, RUTCOR and DIMACS)

Abstract

Clustering is a mathematical technique designed for revealing classification structures in the data collected on real-world phenomena. A cluster is a piece of data (usually, a subset of the objects considered, or a subset of the variables, or both) consisting of the entities which are much “alike”, in terms of the data, versus the other part of the data. The term itself was coined in psychology back in thirties when a heuristical technique was suggested for clustering psychological variables based on pair-wise coefficients of correlation. However, two more disciplines also should be credited for the outburst of clustering occurred in the sixties: numerical taxonomy in biology and pattern recognition in machine learning. Among relevant sources are Hartigan (1975), Jain and Dubes (1988), Mirkin (1996). Simultaneously, industrial and computational applications gave rise to graph partitioning problems which are touched below in 6.2.4.

Suggested Citation

  • Boris Mirkin & Ilya Muchnik, 1998. "Combinatoral Optimization in Clustering," Springer Books, in: Ding-Zhu Du & Panos M. Pardalos (ed.), Handbook of Combinatorial Optimization, pages 1007-1075, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4613-0303-9_15
    DOI: 10.1007/978-1-4613-0303-9_15
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4613-0303-9_15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.