IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4612-6188-9_2.html
   My bibliography  Save this book chapter

Topologies and Density Theorems in Operator Algebras

In: Theory of Operator Algebras I

Author

Listed:
  • Masamichi Takesaki

    (University of California at Los Angeles, Department of Mathematics)

Abstract

By nature, our objects in this book are infinite dimensional, which makes topological and approximation arguments indispensable. In Section 1, we first study the Banach spaces of operators on a Hilbert space ℌ. It is proved that the second conjugate space ℒℭ(ℌ)** of the C*-algebra of all compact operators on ℌ as a Banach space is naturally identified with the Banach space ℒ(ℌ) of all bounded operators on ℌ. This result allows us to introduce, in Section 2, various kinds of locally convex topologies in ℒ(ℌ) related to the duality of ℒ(ℌ) and ℒℭ(ℌ)* as well as to the algebra structure of ℒ(ℌ). In Section 3, the fundamental theorem of operator algebras (the double commutation theorem), due to J. von Neumann, is proved and a few of its immediate consequences are drawn. Section 4 is devoted to various approximation theorems. Among them, Theorem 4.8 is most important. It may be called the fundamental approximation theorem. In this section, the strong continuity of functional calculus is also shown. A striking consequence of this section, Theorem 4.18, is the algebraic irreducibility of an irreducible representation of a C*-algebra. The proof presented here is not the most economic, it is drawn as a consequence from a more powerful result, the noncommutative Lusin’s theorem, Theorem 4.15, which is somewhat technical.

Suggested Citation

  • Masamichi Takesaki, 1979. "Topologies and Density Theorems in Operator Algebras," Springer Books, in: Masamichi Takesaki (ed.), Theory of Operator Algebras I, chapter 0, pages 58-100, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4612-6188-9_2
    DOI: 10.1007/978-1-4612-6188-9_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4612-6188-9_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.