IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4612-5648-9_5.html
   My bibliography  Save this book chapter

Some Isonemal Fabrics on Polyhedral Surfaces

In: The Geometric Vein

Author

Listed:
  • Jean J. Pedersen

    (University of Santa Clara, Department of Mathematics)

Abstract

The motivation for the mathematics presented here should really be viewed as originating with the practitioners of the weaver’s craft. The catalyst that resulted in this particular effort, however, was some recent work of Branko Grünbaum and G. C. Shephard [4,5]. They have carefully analyzed certain geometric objects which represent an idealization of woven fabrics in the plane and their investigations lead, among other things, to remarkable theorems concerning the number and nature of the different kinds of what they call “isonemal”1 fabrics in the plane. They have posed many open problems. The models described and pictured here (see Plates A-E, following page 120) were the result of my investigating one of their problems. The resulting models were a joy to discover and are truly beautiful to behold, but as so frequently happens in mathematics, as the existence of the answer to the original question was unveiled other similar questions seemed to spring forth. And herein lies the major difficulty involved with presenting such embryonic material. It is tempting (and, of course, desirable in the long run) to attack the problem with a great deal of mathematical rigor and preciseness (a) because it will certainly yield to that kind of discussion and (b) because there are beautiful and psychologically satisfying results. I will choose not to do that here because I believe that it is beneficial for the reader to observe first some of the natural beauty and surprise that is felt when viewing these models for the first time (unencumbered by technical detail). My second reason is that I wish, right now, to write an article—not a book.

Suggested Citation

  • Jean J. Pedersen, 1981. "Some Isonemal Fabrics on Polyhedral Surfaces," Springer Books, in: Chandler Davis & Branko Grünbaum & F. A. Sherk (ed.), The Geometric Vein, pages 99-122, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4612-5648-9_5
    DOI: 10.1007/978-1-4612-5648-9_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4612-5648-9_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.