IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4612-4984-9_13.html
   My bibliography  Save this book chapter

Newton’s Method Estimates from Data at One Point

In: The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics

Author

Listed:
  • Steve Smale

    (University of California, Berkeley, Department of Mathematics)

Abstract

Newton’s method and its modifications have long played a central role in finding solutions of non-linear equations and systems. The work of Kantorovich has been seminal in extending and codifying Newton’s method. Kantorovich’s approach, which dominates the literature in this area, has these features: (a) weak differentiability hypotheses are made on the system, e.g., the map is C 2 on some domain in a Banach space; (b) derivative bounds are supposed to exist over the whole of this domain. In contrast, here strong hypotheses on differentiability are made; analyticity is assumed. On the other hand, we deduce consequences from data at a single point. This point of view has valuable features for computation and its theory. Theorems similar to ours could probably be deduced with the Kantorovich theory as a starting point; however, we have found it useful to start afresh.

Suggested Citation

  • Steve Smale, 1986. "Newton’s Method Estimates from Data at One Point," Springer Books, in: Richard E. Ewing & Kenneth I. Gross & Clyde F. Martin (ed.), The Merging of Disciplines: New Directions in Pure, Applied, and Computational Mathematics, pages 185-196, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4612-4984-9_13
    DOI: 10.1007/978-1-4612-4984-9_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4612-4984-9_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.