IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4612-2856-1_30.html
   My bibliography  Save this book chapter

Unification of Statistical Methods for Continuous and Discrete Data

In: Computing Science and Statistics

Author

Listed:
  • Emanuel Parzen

    (Texas A&M University, Department of Statistics)

Abstract

We propose the concept of unification of statistical methods in order to develop a general philosophy of statistical data analysis. We propose that ways of thinking about statistical ends (goals) and means (procedures) are needed that provide a framework for implementing and comparing several different approaches to a data analysis problem. We believe that unification has benefits which include: existing (often parametric) methods will be better understood; many new (often nonparametric) methods will be developed. The new methods are usually computer intensive; consequently unification of statistical methods can be considered to be closely related to computational statistics. We define computational statistical methods as characterized by being graphics intensive and number crunching intensive.

Suggested Citation

  • Emanuel Parzen, 1992. "Unification of Statistical Methods for Continuous and Discrete Data," Springer Books, in: Connie Page & Raoul LePage (ed.), Computing Science and Statistics, pages 235-242, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4612-2856-1_30
    DOI: 10.1007/978-1-4612-2856-1_30
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4612-2856-1_30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.