IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4612-2414-3_13.html
   My bibliography  Save this book chapter

Orthogonalizations and Prior Distributions for Orthogonalized Model Mixing

In: Modelling and Prediction Honoring Seymour Geisser

Author

Listed:
  • Merlise Clyde

    (Duke University, Institute of Statistics and Decision Sciences)

  • Giovanni Parmigiani

Abstract

Prediction methods based on mixing over a set of plausible models can help alleviate the sensitivity of inference and decisions to modeling assumptions. One important application area is prediction in linear models. Computing techniques for model mixing in linear models include Markov chain Monte Carlo methods as well as importance sampling. Clyde, DeSimone and Parmigiani (1996) developed an importance sampling strategy based on expressing the space of predictors in terms of an orthogonal basis. This leads both to a better identified problem and to simple approximations to the posterior model probabilities. Such approximations can be used to construct efficient importance samplers. For brevity, we call this strategy orthogonalized model mixing. Two key elements of orthogonalized model mixing are: a) the orthogonalization method and b) the prior probability distributions assigned to the models and the coefficients. In this paper we consider in further detail the specification of these two elements. In particular, after identifying the aspects of these specifications that are essential to the success of the importance sampler, we list and briefly discuss a number of different alternatives for both a) and b). We highlight the features that may make each one of the options attractive in specific situations and we illustrate some important points via a simulated data set.

Suggested Citation

  • Merlise Clyde & Giovanni Parmigiani, 1996. "Orthogonalizations and Prior Distributions for Orthogonalized Model Mixing," Springer Books, in: Jack C. Lee & Wesley O. Johnson & Arnold Zellner (ed.), Modelling and Prediction Honoring Seymour Geisser, pages 206-227, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4612-2414-3_13
    DOI: 10.1007/978-1-4612-2414-3_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4612-2414-3_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.