IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4612-2012-1_13.html
   My bibliography  Save this book chapter

On the Well-Posedness of the Rational Covariance Extension Problem

In: Current and Future Directions in Applied Mathematics

Author

Listed:
  • Christopher I. Byrnes

    (Washington University, Department of Systems Science and Mathematics)

  • Henry J. Landau

    (AT& T Bell Laboratories, Mathematical Science Research)

  • Anders Lindquist

    (Royal Institute of Technology, Division of Optimization and Systems Theory)

Abstract

In this paper, we give a new proof of the solution of the rational covariance extension problem, an interpolation problem with historical roots in potential theory, and with recent application in speech synthesis, spectral estimation, stochastic systems theory, and systems identification. The heart of this problem is to parameterize, in useful systems theoretical terms, all rational, (strictly) positive real functions having a specified window of Laurent coefficients and a bounded degree. In the early 1980’s, Georgiou used degree theory to show, for any fixed “Laurent window”, that to each Schur polynomial there exists, in an intuitive systems-theoretic manner, a solution of the rational covariance extension problem. He also conjectured that this solution would be unique, so that the space of Schur polynomials would parameterize the solution set in a very useful form. In a recent paper, this problem was solved as a corollary to a theorem concerning the global geometry of rational, positive real functions. This corollary also asserts that the solutions are analytic functions of the Schur polynomials. After giving an historical motivation and a survey of the rational covariance extension problem, we give a proof that the rational covariance extension problem is well-posed in the sense of Hadamard, i.e a proof of existence, uniqueness and continuity of solutions with respect to the problem data. While analytic dependence on the problem data is stronger than continuity, this proof is much more streamlined and also applies to a broader class of nonlinear problems. The paper concludes with a discussion of open problems.

Suggested Citation

  • Christopher I. Byrnes & Henry J. Landau & Anders Lindquist, 1997. "On the Well-Posedness of the Rational Covariance Extension Problem," Springer Books, in: Mark Alber & Bei Hu & Joachim Rosenthal (ed.), Current and Future Directions in Applied Mathematics, pages 83-108, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4612-2012-1_13
    DOI: 10.1007/978-1-4612-2012-1_13
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4612-2012-1_13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.