IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4612-2012-1_12.html
   My bibliography  Save this book chapter

Oscillatory Descent for Function Minimization

In: Current and Future Directions in Applied Mathematics

Author

Listed:
  • Roger Brockett

    (Harvard University, Division of Engineering and Applied Sciences)

Abstract

Algorithms for minimizing a function based on continuous descent methods following the gradient relative to some riemannian metric suffer from the twin problems of converging to local, rather than global, minima and giving little indication about an approximate answer until the process has nearly converged. Simulated annealing addresses these problems through the introduction of stochastic terms, however the rate of convergence associated with the method can be unacceptably slow. In this paper we discuss a modification of simulated annealing which approaches a minimum through a damped oscillatory path. The characteristics of the path, including its tendency to be irregular, reflect the properties of the function being minimized. The oscillatory algorithm involves both a temperature and coupling parameters, giving it considerable flexibility.

Suggested Citation

  • Roger Brockett, 1997. "Oscillatory Descent for Function Minimization," Springer Books, in: Mark Alber & Bei Hu & Joachim Rosenthal (ed.), Current and Future Directions in Applied Mathematics, pages 65-82, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4612-2012-1_12
    DOI: 10.1007/978-1-4612-2012-1_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4612-2012-1_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.