IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4612-2002-2_12.html

Doubly Connected Regions

In: Computational Conformal Mapping

Author

Listed:
  • Prem K. Kythe

    (University of New Orleans, Department of Mathematics)

Abstract

Some well-known numerical methods for approximating conformal mapping of doubly regions onto an annulus or the unit disk are presented. There is a definite need for a simple yet accurate method for mapping a general doubly connected region onto a circular annulus. According to Kantorovich and Krylov (1958, p. 362) the problem of finding the conformal modulus is ‘one of the difficult problems of the theory of conformal transformation’. As such, analytic solutions have been determined for a very restricted class of doubly connected regions, like those mentioned in Muskhelishvili (1963, §48). Numerical solutions are also confined to a limited class of regions where either one boundary is circular or axisymmetric. Most common methods use integral equations, iterations, polynomial approximations, and kernels. We shall develop Symm’s integral equations and the related orthonormal polynomial method. A dipole formulation that leads to the method of reduction of connectivity shall be presented. Another useful method for multiply connected regions, based on Mikhlin’s integral equation, that also works for simply and doubly connected regions as well will be discussed in Chapter 13.

Suggested Citation

  • Prem K. Kythe, 1998. "Doubly Connected Regions," Springer Books, in: Computational Conformal Mapping, chapter 0, pages 295-319, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4612-2002-2_12
    DOI: 10.1007/978-1-4612-2002-2_12
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4612-2002-2_12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.