IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4612-1102-0_3.html
   My bibliography  Save this book chapter

Great problems of geometry and space

In: The Beauty of Doing Mathematics

Author

Listed:
  • Serge Lang

    (Yale University, Department of Mathematics)

Abstract

Summary To do mathematics is to raise great mathematical problems, and try to solve them. Eventually to solve them. This time, we shall treat problems of geometry and space, and we shall classify geometric objects in dimensions 2 and 3. Dimension 2 is classical: it’s the classification of surfaces, which are obtained by attaching handles on spheres. One can also describe surfaces by using the Poincaré −Lobatchevsky upper half plane. What happens in higher dimensions? In dimension ≧5, Smale obtained decisive results in 1960. Last year, Thurston published great results in dimension 3. He conjectured the way such objects can be constructed starting with simple models, and also how one could obtain them from the analogue of the upper half plane in 3 dimensions. He proved a good part of his conjectures. We shall describe Thurston’s vision

Suggested Citation

  • Serge Lang, 1985. "Great problems of geometry and space," Springer Books, in: The Beauty of Doing Mathematics, pages 71-127, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4612-1102-0_3
    DOI: 10.1007/978-1-4612-1102-0_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4612-1102-0_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.