IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4612-0159-5_25.html
   My bibliography  Save this book chapter

Helmstetter Formula and Rigid Motions with CLIFFORD

In: Geometric Algebra with Applications in Science and Engineering

Author

Listed:
  • Rafal Ablamowicz

Abstract

CLIFFORD is a Maple package for symbolic computations in Clifford algebras Cl(B) of an arbitrary symbolic or numeric bilinear form B. The purpose of this paper is to show usability and power of CLIFFORD when performing computer-based proofs and explorations of mathematical aspects of Clifford algebras and their applications. It is intended as an invitation to engineers, computer scientists, and robotics to use Clifford algebra methods as opposed to coordinate/matrix methods. CLIFFORD has been designed as a tool to promote and facilitate explorative mathematics among non Clifford-algebra specialists. As an example of the power of CLIFFORD, we restate a formula due to Helmstetter which relates the product in Cl(g), the Clifford algebra of the symmetric part of B, to the product in Cl(B). Then, with CLIFFORD, we prove it in dimension 3. Clifford algebras of a degenerate quadratic form provide a convenient tool with which to study groups of rigid motions in ℝ3. Using CLIFFORD we will actually explicitly describe all elements of Pin(3) and Spin(3). Rotations in ℝ3 can then be generated by unit quaternions realized as even elements in Cl 0,3 + Simple computations using quaternions are then performed with CLIFFORD. Throughout this paper we illustrate actual CLIFFORD commands and steps undertaken to solve the problems.

Suggested Citation

  • Rafal Ablamowicz, 2001. "Helmstetter Formula and Rigid Motions with CLIFFORD," Springer Books, in: Eduardo Bayro Corrochano & Garret Sobczyk (ed.), Geometric Algebra with Applications in Science and Engineering, chapter 0, pages 512-534, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4612-0159-5_25
    DOI: 10.1007/978-1-4612-0159-5_25
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4612-0159-5_25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.