IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4612-0129-8_2.html
   My bibliography  Save this book chapter

Toeplitz/Hankel Matrix Structure and Polynomial Computations

In: Structured Matrices and Polynomials

Author

Listed:
  • Victor Y. Pan

    (Lehman College, CUNY, Department of Mathematics and Computer Science)

Abstract

Toeplitz matrices, Hankel matrices, and matrices with similar structures (such as Frobenius, Sylvester, and subresultant matrices) are probably the most studied structured matrices. Among their numerous important areas of application, we select fundamental polynomial computations, including multiplication, and the Extended Euclidean Algorithm, together with their several extensions and applications. In this chapter we reveal the correlation among computations with polynomials and structured matrices of Toeplitz and Hankel types (see Figures 2.1 and 2.2) and show superfast algorithms for these computations. In the next chapter we similarly study matrices of Vandermonde and Cauchy types. Apart from the introductory material of the next section and the estimates for the arithmetic cost of multiplying Toeplitz, Hankel, Vandermonde, and Cauchy matrices by vectors, the results of these two chapters are little used in Chapters 4–7. Some sample pseudocodes for the algorithms of Sections 2.4 and 2.5 are collected in Section 2.15.

Suggested Citation

  • Victor Y. Pan, 2001. "Toeplitz/Hankel Matrix Structure and Polynomial Computations," Springer Books, in: Structured Matrices and Polynomials, chapter 0, pages 23-71, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4612-0129-8_2
    DOI: 10.1007/978-1-4612-0129-8_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4612-0129-8_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.