IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4471-4616-2_5.html
   My bibliography  Save this book chapter

The New Topology

In: L.E.J. Brouwer – Topologist, Intuitionist, Philosopher

Author

Listed:
  • Dirk van Dalen

    (Utrecht University, Department of Philosophy)

Abstract

The next step in Brouwer’s topological research was the study of continuous maps on manifolds. The program opened with a bang: in a brief note Brouwer proved the invariance of dimension under homeorphisms. This publication led to an unpleasant altercation with Lebesgue, who claimed to have already found a proof. In fact he had deduced the invariance from the paving principle, but failed to prove the paving principle. In the end Brouwer’s priority and superior insight was fully vindicated. In subsequent papers Brouwer enriched the arsenal of basic notions of topology with simplicial approximation and the mapping degree. The contacts with Baire, Hadamard, Blumenthal, and Hilbert, are described. Brouwer’s name became lastingly attached to his fixed point theorem. Brouwer also proved the invariance of domain theorem, which he subsequently used to salvage Klein’s continuity method for proving uniformisation. This brought him into a conflict with Paul Koebe, who was the uncrowned king of uniformisation and complex function theory. This first topological period closed with a significant feat: Brouwer defined, following Poincaré’s first approach, the general notion of dimension, and proved its ‘correctness’, i.e. showed that ℝ n is n-dimensional.

Suggested Citation

  • Dirk van Dalen, 2013. "The New Topology," Springer Books, in: L.E.J. Brouwer – Topologist, Intuitionist, Philosopher, edition 127, chapter 0, pages 149-192, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4471-4616-2_5
    DOI: 10.1007/978-1-4471-4616-2_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4471-4616-2_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.