IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4419-6581-3_1.html
   My bibliography  Save this book chapter

Introduction

In: Principles of Discontinuous Dynamical Systems

Author

Listed:
  • Marat Akhmet

    (Middle East Technical University, Department of Mathematics)

Abstract

Nowadays, many mathematicians agree that discontinuity as well as continuity should be considered when one seeks to describe the real world more adequately. The idea that, besides continuity, discontinuity is a property of motion is as old as the idea of motion itself. This understanding was strong in ancient Greece. For example, it was expressed in paradoxes of Zeno. Invention of calculus by Newton and Leibniz in its last form, and the development of the analysis adjunct to celestial mechanics, which was stimulating for the founders of the theory of dynamical systems, took us away from the concept of discontinuity. The domination of continuous dynamics, and also smooth dynamics, has been apparent for a long time. However, the application of differential equations in mechanics, electronics, biology, neural networks, medicine, and social sciences often necessitates the introduction of discontinuity, as either abrupt interruptions of an elsewhere continuous process (impulsive differential equations) or in the form of discrete time setting (difference equations). If difference equations may be considered as an instrument of investigation of continuous motion through, for example, Poincaré maps, impulsive differential equations seem appropriate for modeling motions where continuous changes are mixed with impact type changes in equal proportion. Recently, it is becoming clear that to discuss real world systems that (1) exist for a long period of time, or (2) are multidimensional, with a large number of dependent variables, researchers resort to differential equations with: (1) discontinuous trajectories (impulsive differential equations); (2) switching in the right-hand side (differential equations with discontinuous right-hand side); (3) some coordinates ruled by discrete equations (hybrid systems); (4) disconnected domains of existence of solutions (time scale differential equations), where these properties may be combined in a single model.

Suggested Citation

  • Marat Akhmet, 2010. "Introduction," Springer Books, in: Principles of Discontinuous Dynamical Systems, chapter 0, pages 1-6, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4419-6581-3_1
    DOI: 10.1007/978-1-4419-6581-3_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4419-6581-3_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.