Author
Listed:
- Samuel S. Wu
(University of Florida, University of Florida and Statistical Consultant)
- P. V. Rao
(University of Florida, University of Florida and Statistical Consultant)
- Aparna Raychaudhuri
(University of Florida, University of Florida and Statistical Consultant)
Abstract
Summary The problem of testing equality of survival distributions on the basis of paired censored survival data has received considerable attention in literature. Some of the important statistics used for such purposes can be expressed as linear combinations of two statistics, one based on uncensored pairs and the other based on the censored pairs. Raychaudhuri and Rao (Nonparametric Statistics, 1996, 6, 1–11) investigated properties of two classes of such statistics and derived expressions for the optimal coefficients (weights) for the linear combination that will maximize efficacy within each class. As the optimal weights depend upon the form of the underlying survival and censoring distributions, statistics with optimal weights can only be used with estimated weights. This article presents a method of estimating optimal weights on the basis of an assumed model that specifies the distribution of the difference between the observed survival times conditional on the censoring pattern. The model, in addition to dispensing with the usual assumption that the survival and censoring variables are independent, also permits a graphical check of its lack of fit on the basis of observed data. The performance of statistics with the estimated weights is evaluated by using two simulation studies – one with data generated under the assumed model and the other assuming independence of the survival and censoring times. Simulation results show that the optimal statistics with estimated weights have good power properties in all cases considered, and that they compare well with other commonly used tests for paired censored survival data. An advantage of the tests with optimal weights is that, unlike their competitors, these tests have demonstrated performance characteristics in some cases where the assumption of independent censoring may not be justified.
Suggested Citation
Samuel S. Wu & P. V. Rao & Aparna Raychaudhuri, 2010.
"Optimal Weights for a Class of Rank Tests for Censored Bivariate Data,"
Springer Books, in: Krishnaswami Alladi & John R. Klauder & Calyampudi R. Rao (ed.), The Legacy of Alladi Ramakrishnan in the Mathematical Sciences, pages 369-388,
Springer.
Handle:
RePEc:spr:sprchp:978-1-4419-6263-8_23
DOI: 10.1007/978-1-4419-6263-8_23
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4419-6263-8_23. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.