IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4419-5525-8_3.html
   My bibliography  Save this book chapter

The Normal Curve and Outlier Detection

In: Fundamentals of Modern Statistical Methods

Author

Listed:
  • Rand R. Wilcox

    (University of Southern California College of Letters, Arts & Sciences, Department of Psychology)

Abstract

No doubt the reader is well aware that the normal curve plays an integral role in applied research. Properties of this curve, that are routinely described in every introductory statistics course, make it extremely important and useful. Yet, in recent years, it has become clear that this curve can be a potential source for misleading and even erroneous conclusions in our quest to under- stand data. This chapter summarizes some basic properties of the normal curve that play an integral role in conventional inferential methods. But this chapter also lays the groundwork for understanding how the normal curve can mislead. A specific example covered here is how the normal curve suggests a frequently employed method for detecting outliers that can be highly misleading in a variety of commonly occurring situations. This chapter also describes the central limit theorem, which is frequently invoked in an attempt to deal with nonnormal probability curves. Often the central limit theorem is taken to imply that with about 25 observations, practical problems due to nonnormality become negligible. There are several reasons why this view is erroneous, one of which is given here. The illustrations in this chapter provide a glimpse of additional problems to be covered.

Suggested Citation

  • Rand R. Wilcox, 2010. "The Normal Curve and Outlier Detection," Springer Books, in: Fundamentals of Modern Statistical Methods, edition 0, chapter 0, pages 29-45, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4419-5525-8_3
    DOI: 10.1007/978-1-4419-5525-8_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4419-5525-8_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.