IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-1-4419-0630-4_6.html
   My bibliography  Save this book chapter

Linear quadratic optimization problems

In: Mathematical Methods in Robust Control of Discrete-Time Linear Stochastic Systems

Author

Listed:
  • Vasile Drăgan

    (Institute of Mathematics “Simion Stoilow” of the Romanian Academy)

  • Toader Morozan

    (Institute of Mathematics “Simion Stoilow” of the Romanian Academy)

  • Adrian-Mihail Stoica

    (University “Politehnica” of Bucharest, Faculty of Aerospace Engineering)

Abstract

In this chapter several problems of the optimization of a quadratic cost functional along the trajectories of a discrete-time linear stochastic system affected by jumping Markov perturbations are independent random perturbations are investigated. In Section 6.2 we deal with the classical problem of the linear quadratic optimal regulator which means the minimization of a quadratic cost functional with definite sign along the trajectories of a controlled linear system. Also in Section 6.3 the general case of a linear quadratic optimization problem with a cost functional without sign is treated. It is shown that in the case of a linear quadratic optimal regulator, the optimal control is constructed via the minimal solution of a system of discrete-time Riccati-type equations, whereas in the general case of the linear quadratic optimization problem without sign, the optimal control, if it exists, is constructed based on the stabilizing solution of a system of discrete-time Riccati-type equations. In Section 6.4 we deal with the problem of the optimization of a quadratic cost functional of a discrete-time affine stochastic system affected by jumping Markov perturbations and independent random perturbations. Both the case of finite time horizon as well as the infinite time horizon are considered. Optimal control is constructed using the stabilizing solution for a system of discrete-time Riccati-type equations. A set of necessary and sufficient conditions ensuring the existence of the desired solutions of the discrete-time Riccati equations involved in this chapter were given in Chapter 5. A tracking problem is also solved.

Suggested Citation

  • Vasile Drăgan & Toader Morozan & Adrian-Mihail Stoica, 2010. "Linear quadratic optimization problems," Springer Books, in: Mathematical Methods in Robust Control of Discrete-Time Linear Stochastic Systems, edition 0, chapter 6, pages 185-221, Springer.
  • Handle: RePEc:spr:sprchp:978-1-4419-0630-4_6
    DOI: 10.1007/978-1-4419-0630-4_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-1-4419-0630-4_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.