IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-85729-030-4_6.html
   My bibliography  Save this book chapter

VI Domains of holomorphy and pseudoconvexity

In: Holomorphic Function Theory in Several Variables

Author

Listed:
  • Christine Laurent-Thiébaut

    (Université Joseph Fourier, Institut Fourier)

Abstract

At the end of Chapter I and in Chapter III we met open sets in ℂ n on which any holomorphic function can be extended to a larger open set. The open sets which do not have this property are called domains of holomorphy: in this chapter we study such open sets. We start by giving a characterisation of domains of holomorphy in terms of holomorphic convexity (the Cartan–Thullen theorem). We then introduce the notion of pseudoconvexity in order to get a more analytic characterisation of domains of holomorphy. This requires us to define plurisubharmonic functions. We then prove that every domain of holomorphy is pseudoconvex: the converse, which is known as the Levi problem, is studied in Chapter VII.

Suggested Citation

  • Christine Laurent-Thiébaut, 2011. "VI Domains of holomorphy and pseudoconvexity," Springer Books, in: Holomorphic Function Theory in Several Variables, pages 113-145, Springer.
  • Handle: RePEc:spr:sprchp:978-0-85729-030-4_6
    DOI: 10.1007/978-0-85729-030-4_6
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-85729-030-4_6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.