IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-8176-8394-8_10.html
   My bibliography  Save this book chapter

Fast Chaotic Artificial Time Integration

In: The Courant–Friedrichs–Lewy (CFL) Condition

Author

Listed:
  • Uri Ascher

    (University of British Columbia, Department of Computer Science)

  • Kees van den Doel

    (University of British Columbia, Department of Computer Science)

Abstract

Gradient descent methods for large positive definite linear and nonlinear algebraic systems arise when integrating a PDE to steady state and when regularizing inverse problems. However, these methods may converge very slowly when utilizing a constant step size, or when employing an exact line search at each step, with the iteration count growing proportionally to the condition number. Faster gradient descent methods must occasionally resort to significantly larger step sizes, which in turn yields a strongly nonmonotone decrease pattern in the residual vector norm. In fact, such faster gradient descent methods generate chaotic dynamical systems for the normalized residual vectors. Very little is required to generate chaos here: simply damping steepest descent by a constant factor close to 1 will do. The fastest practical methods of this family in general appear to be the chaotic, two-step ones. Despite their erratic behavior, these methods may also be used as smoothers, or regularization operators. Our results also highlight the need for better theory for these methods.

Suggested Citation

  • Uri Ascher & Kees van den Doel, 2013. "Fast Chaotic Artificial Time Integration," Springer Books, in: Carlos A. de Moura & Carlos S. Kubrusly (ed.), The Courant–Friedrichs–Lewy (CFL) Condition, edition 127, pages 147-155, Springer.
  • Handle: RePEc:spr:sprchp:978-0-8176-8394-8_10
    DOI: 10.1007/978-0-8176-8394-8_10
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-8176-8394-8_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.