IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-8176-8238-5_4.html
   My bibliography  Save this book chapter

A General Analytical Solution of the Advection–Diffusion Equation for Fickian Closure

In: Integral Methods in Science and Engineering

Author

Listed:
  • D. Buske

    (Universidade Federal de Pelotas)

  • M. T. Vilhena

    (Universidade Federal do Rio Grande do Sul)

  • C. F. Segatto

    (Universidade Federal do Rio Grande do Sul)

  • R. S. Quadros

    (Universidade Federal de Pelotas)

Abstract

In the last few years there has been increased research interest in searching for analytical solutions for the advection–diffusion equation (ADE). By analytical we mean that no approximation is done along the derivation of the solution. There exists a significant literature regarding this theme. For illustration we mention the works of (Rounds 1955; Smith 1957; Scriven, Fisher 1975; Demuth 1978; van Ulden 1978; Nieuwstadt, de Haan 1981; Tagliazucca et al. 1985; Tirabassi 1989; Tirabassi, Rizza 1994; Sharan et al. 1996; Lin, Hildemann 1997; Tirabassi 2003). We note that in these works all solutions are valid for very specialized problems having specific wind and eddy diffusivities vertical profiles. Further, also in the literature there is the ADMM (Advection Diffusion Multilayer Method) approach which solves the two-dimensional ADE with variable wind profile and eddy diffusivity coefficient (Moreira et al. 2006). The main idea relies on the discretization of the Atmospheric Boundary Layer (ABL) in a multilayer domain, assuming in each layer that the eddy diffusivity and wind profile take averaged values. The resulting advection–diffusion equation in each layer is then solved by the Laplace transformation technique. For more details about this methodology see the review work done by (Moreira et al. 2006). We are also aware of the recent work of (Costa et al. 2006), dubbed as GIADMT method (Generalized Integral Advection Diffusion Multilayer Technique), which presented a general solution for the time-dependent three-dimensional ADE, again assuming the stepwise approximation for the eddy diffusivity coefficient and wind profile and proceeding further in similar way according the previous work. To avoid this approximation, in this work we report an analytical general solution for this problem, assuming that the eddy diffusivity coefficient and wind profile are arbitrary functions having a continuous dependence on the vertical and longitudinal variables. Without losing generality we specialize the application in micrometeorology, specially for the problem of simulation of contaminant releasing in the ABL.

Suggested Citation

  • D. Buske & M. T. Vilhena & C. F. Segatto & R. S. Quadros, 2011. "A General Analytical Solution of the Advection–Diffusion Equation for Fickian Closure," Springer Books, in: Christian Constanda & Paul J. Harris (ed.), Integral Methods in Science and Engineering, edition 1, pages 25-34, Springer.
  • Handle: RePEc:spr:sprchp:978-0-8176-8238-5_4
    DOI: 10.1007/978-0-8176-8238-5_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-8176-8238-5_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.