IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-8176-8232-3_11.html
   My bibliography  Save this book chapter

Lebesgue Measure

In: Basic Real Analysis

Author

Listed:
  • Houshang H. Sohrab

    (Towson University, Mathematics Department)

Abstract

The most common approach to Lebesgue integration is to start with the notion of measure, which extends the simple idea of length to more complicated sets, and use it to define measurable functions and their Lebesgue integral. We have chosen Riesz’s approach and have introduced the Lebesgue integral first. Therefore, we shall define the idea of measure using the integral. As we have seen, the space L1(ℝ) of all Lebesgue integrable functions studied in Chapter 10 is a large class of functions. Unfortunately, it does not contain some of the nicest functions we constantly encounter in analysis: For instance, it does not contain continuous functions or even constant functions on unbounded intervals. Also, although convergence theorems such as Lebesgue’s Dominated Convergence Theorem are valid under very reasonable conditions, a sequence of integrable functions that converges almost everywhere does not, in general, have an integrable limit. We are therefore interested in a larger class of functions containing simultaneously all functions one encounters in practice. One of our goals in this chapter will be to introduce and study this class. Although we start with F. Riesz’s definition of a measurable function, we shall later give the more general definitions of measure, measurable sets, and measurable functions and prove the equivalence of the corresponding definitions for Lebsegue measure. In addition, we shall give another definition of the Lebesgue integral for measurable functions and show that it is equivalent to Riesz’s definition given in the previous chapter. Throughout this chapter, I, J, etc. will denote (possibly unbounded) intervals of ℝ.

Suggested Citation

  • Houshang H. Sohrab, 2003. "Lebesgue Measure," Springer Books, in: Basic Real Analysis, chapter 11, pages 431-465, Springer.
  • Handle: RePEc:spr:sprchp:978-0-8176-8232-3_11
    DOI: 10.1007/978-0-8176-8232-3_11
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-8176-8232-3_11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.