IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-8176-4899-2_4.html
   My bibliography  Save this book chapter

Two-Operator Boundary–Domain Integral Equations for a Variable-Coefficient BVP

In: Integral Methods in Science and Engineering, Volume 1

Author

Listed:
  • T. G. Ayele

    (Addis Ababa University)

  • S. E. Mikhailov

    (Brunel University West London)

Abstract

Partial differential equations (PDEs) with variable coefficients often arise in mathematical modeling of inhomogeneous media (e.g., functionally graded materials or materials with damage-induced inhomogeneity) in solid mechanics, electromagnetics, heat conduction, fluid flows through porous media, and other areas of physics and engineering. Generally, explicit fundamental solutions are not available if the PDE coefficients are not constant, preventing formulation of explicit boundary integral equations, which can then be effectively solved numerically. Nevertheless, for a rather wide class of variable–coefficient PDEs, it is possible to use instead an explicit parametrix (Levi function) taken as a fundamental solution of corresponding frozen–coefficient PDEs, and reduce boundary value problems (BVPs) for such PDEs to explicit systems of boundary–domain integral equations (BDIEs); see, e.g., [Mi02, CMN09, Mi06] and references therein. However this (one–operator) approach does not work when the fundamental solution of the frozen–coefficient PDE is not available explicitly (as, e.g., in the Lam’e system of anisotropic elasticity).

Suggested Citation

  • T. G. Ayele & S. E. Mikhailov, 2010. "Two-Operator Boundary–Domain Integral Equations for a Variable-Coefficient BVP," Springer Books, in: Christian Constanda & M.E. Pérez (ed.), Integral Methods in Science and Engineering, Volume 1, chapter 4, pages 29-39, Springer.
  • Handle: RePEc:spr:sprchp:978-0-8176-4899-2_4
    DOI: 10.1007/978-0-8176-4899-2_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-8176-4899-2_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.