IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-8176-4899-2_19.html
   My bibliography  Save this book chapter

Existence of a Classical Solution and Nonexistence of a Weak Solution to the Dirichlet Problem for the Laplace Equation in a Plane Domain with Cracks

In: Integral Methods in Science and Engineering, Volume 1

Author

Listed:
  • P. A. Krutitskii

    (Keldysh Institute of Applied Mathematics)

  • N. Ch. Krutitskaya

    (Moscow State Lomonosov University)

Abstract

Plane domains with cracks are plane domains bounded by closed curves and open arcs (cracks). Boundary value problems in such domains model cracked solid bodies or obstacles and screens (or wings) in fluids. An integral representation of a classical solution to the harmonic Dirichlet problem in a plane domain with cracks of an arbitrary shape has been obtained by the method of integral equations in [Kr00-1], [Kr00-2], [Kr98], [Kr97], [Kr05] in the case when the solution is assumed to be continuous at the ends of the cracks. In this chapter this problem is considered in the case when the solution is not continuous at the ends of the cracks. The well-posed formulation of the boundary value problem is given, theorems on existence and uniqueness of a classical solution are proved, and the integral representation for a classical solution is obtained. Moreover, properties of the solution are studied with the help of this integral representation. It appears that the classical solution to the Dirichlet problem considered in this chapter exists, while the weak solution typically does not exist, though both the cracks and the functions specified in the boundary conditions are smooth enough. This result follows from the fact that the square of the gradient of a classical solution basically is not integrable near the ends of the cracks, since singularities of the gradient are rather strong there. This result is very important for numerical analysis; it shows that finite elements and finite difference methods cannot be applied to numerical treatment of the Dirichlet problem in question directly, since all these methods imply existence of a weak solution. To use difference methods for numerical analysis, one has to localize all strong singularities first and next use a difference method in a domain excluding the neighborhoods of the singularities.

Suggested Citation

  • P. A. Krutitskii & N. Ch. Krutitskaya, 2010. "Existence of a Classical Solution and Nonexistence of a Weak Solution to the Dirichlet Problem for the Laplace Equation in a Plane Domain with Cracks," Springer Books, in: Christian Constanda & M.E. PĂ©rez (ed.), Integral Methods in Science and Engineering, Volume 1, chapter 19, pages 183-192, Springer.
  • Handle: RePEc:spr:sprchp:978-0-8176-4899-2_19
    DOI: 10.1007/978-0-8176-4899-2_19
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-8176-4899-2_19. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.