IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-8176-4899-2_16.html
   My bibliography  Save this book chapter

On J. Ball’s Fundamental Existence Theory and Regularity of Weak Equilibria in Nonlinear Radial Hyperelasticity

In: Integral Methods in Science and Engineering, Volume 1

Author

Listed:
  • S. M. Haidar

    (Grand Valley State University)

Abstract

In 1982, J. Ball formulated a pioneering theory on the existence and uniqueness of weak radial equilibria to the pure displacement boundary value problem associated with isotropic, frame-invariant strain-energy functions in nonlinear hyperelasticity. In the theory [Bal82], he posed the following question: “Does strong ellipticity (‘of the stored energy’) imply that all solutions to the equilibrium equations which pass through the origin and have finite energy are trivial?” J. Ball’s work depended critically on the number of elasticity dimensions. In this chapter, we will present models in n-dimensional elasticity that establish that the answer to J. Ball’s question is negative. This work extends to higher dimensional elasticity the approach and results we presented, for the first time, on this question in [Ha07]. These models also provide further insight into another central, (very) difficult problem of nonlinear elasticity, namely, that of regularity of weak equilibria, which would be hard to gain by other methods such as the common, but delicate, phase plane analysis.

Suggested Citation

  • S. M. Haidar, 2010. "On J. Ball’s Fundamental Existence Theory and Regularity of Weak Equilibria in Nonlinear Radial Hyperelasticity," Springer Books, in: Christian Constanda & M.E. Pérez (ed.), Integral Methods in Science and Engineering, Volume 1, chapter 16, pages 161-171, Springer.
  • Handle: RePEc:spr:sprchp:978-0-8176-4899-2_16
    DOI: 10.1007/978-0-8176-4899-2_16
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-8176-4899-2_16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.