IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-8176-4897-8_29.html
   My bibliography  Save this book chapter

Solution of the Fokker–Planck Pencil Beam Equation for Electrons by the Laplace Transform Technique

In: Integral Methods in Science and Engineering, Volume 2

Author

Listed:
  • B. Rodriguez

    (Universidade Federal do Rio Grande)

  • M. T. Vilhena

    (Universidade Federal do Rio Grande)

Abstract

While many medical physicists understand the basic principles underlying Monte Carlo codes such as EGS [Ka00], Geant [Wr01], and MCNP [Br93], there is less appreciation of the capabilities of deterministic methods which in principle can provide comparable accuracies to Monte Carlo. Only within the last years have serious studies been made on the appliance of deterministic calculations to medical physics applications. The most versatile and widely used deterministic methods are the P N approximation [Da57]; [SeViPa00], the S N method (discrete ordinates method) [ViBa95]; [ViSeBa95], and their variants [SeVi94]; [RoViVo06]. The method of discrete ordinates has been used successfully in neutral particle applications [D096]; [Da92] and gamma ray transport calculations for many years. The calculations for these two types of radiation are done very similarly, since they are both neutral particles. On the other hand, to our knowledge, the P N approximation has not yet been applied in the solution of the charged particle pencil beam transport equation. Pencil beam equations are used to model, e.g., problems of collimated electron and photon particles penetrating piecewise homogeneous regions. The collisions between the beam particles and particles from beams with different directions cause deposit of some part of the energy carried by the beams at the collision sites. To obtain a desired “amounts of energy deposited at certain parts of the target region” (dose) is of crucial interest in radiative cancer therapy.

Suggested Citation

  • B. Rodriguez & M. T. Vilhena, 2010. "Solution of the Fokker–Planck Pencil Beam Equation for Electrons by the Laplace Transform Technique," Springer Books, in: Christian Constanda & M.E. Pérez (ed.), Integral Methods in Science and Engineering, Volume 2, chapter 29, pages 311-320, Springer.
  • Handle: RePEc:spr:sprchp:978-0-8176-4897-8_29
    DOI: 10.1007/978-0-8176-4897-8_29
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-8176-4897-8_29. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.