Author
Abstract
The physical model of an absorbing scattering medium (ASM) and the corresponding mathematical model of the radiation transfer equation (RTE) were originally formulated to study dilute dispersed systems like fog [SiHo02]. Such media contain well-separated small particles (droplets), and so they are essentially heterogeneous. Therefore, even the derivation of the conventional RTE can be considered as a problem of homogenization. Nevertheless, homogenization of radiation transfer is often meant as a problem for the conventional RTE with oscillating coefficients [Pa05]. Oscillations with a period much smaller than the characteristic length scale of the problem can be averaged to obtain the effective coefficients of the homogenized RTE. Thus, from a physical point of view, a heterogeneous ASM with short-scale variations of the radiative properties is replaced by an equivalent homogeneous ASM with the effective radiative properties. Such a homogenization problem contains two small length scales of different size. The smallest scale is the size of the scattering inhomogeneity (particle) and the intermediate scale is the period of oscillations of the radiative properties. The radiative properties of dilute dispersed media can be obtained from the scattering properties of a single particle [SiHo02], but considerable difficulties arise in dense dispersed systems where the volume fraction of the dispersed phases is comparable with the volume fraction of the matrix. The distances between the scatterers (particles) become comparable with their sizes in such systems, so that a mutual influence of the scatterers should be taken into account. This is referred to as dependent scattering. The current mathematical approach to dependent scattering is the RTE with modified radiative properties [BaSa00]. However, the applicability of the RTE to dense dispersed systems has never been rigorously proved.
Suggested Citation
A. V. Gusarov & I. Smurov, 2010.
"Homogenized Models of Radiation Transfer in Multiphase Media,"
Springer Books, in: Christian Constanda & M.E. Pérez (ed.), Integral Methods in Science and Engineering, Volume 2, chapter 17, pages 183-192,
Springer.
Handle:
RePEc:spr:sprchp:978-0-8176-4897-8_17
DOI: 10.1007/978-0-8176-4897-8_17
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-8176-4897-8_17. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.