IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-8176-4715-5_4.html
   My bibliography  Save this book chapter

Groups, Lie Groups, and Lie Algebras

In: An Introduction to Tensors and Group Theory for Physicists

Author

Listed:
  • Nadir Jeevanjee

    (University of California, Department of Physics)

Abstract

Chapter 4 introduces abstract groups and Lie groups, which are a formalization of the notion of a physical transformation. The chapter begins with the definition of an abstract group along with examples, then specializes to a discussion of the groups that arise most often in physics, particularly the rotation group O(3) and the Lorentz group SO(3,1) o . These groups are discussed in coordinates and in great detail, so that the reader gets a sense of what they look like in action. Then we discuss homomorphisms of groups, which allows us to make precise the relationship between the rotation group O(3) and its quantum-mechanical ‘double-cover’ SU(2). We then define matrix Lie groups and demonstrate how the so-called ‘infinitesimal’ elements of the group give rise to a Lie algebra, whose properties we then explore. We discuss many examples of Lie algebras in physics, and then show how homomorphisms of matrix Lie groups induce homomorphisms of their associated Lie algebras.

Suggested Citation

  • Nadir Jeevanjee, 2011. "Groups, Lie Groups, and Lie Algebras," Springer Books, in: An Introduction to Tensors and Group Theory for Physicists, edition 1, chapter 0, pages 87-143, Springer.
  • Handle: RePEc:spr:sprchp:978-0-8176-4715-5_4
    DOI: 10.1007/978-0-8176-4715-5_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-8176-4715-5_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.