IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-8176-4634-9_3.html
   My bibliography  Save this book chapter

Geometry of Yang–Mills A-Connections

In: Modern Differential Geometry in Gauge Theories

Author

Listed:
  • Anastasios Mallios

    (University of Athens Panepistimioupolis, Department of Mathematics)

Abstract

The geometry referred to in the title concerns an application of classical differentialgeometric notions/methods in the study of structure properties (geometry) of the space that interests us here, which is the space of solutions (again!) of the so-called Yang–Mills equations; these solutions are, by definition, A-connections in the sense of the present treatise, which thus appear on the stage through their corresponding curvature (field strength), which is actually involved in the equations at issue. (See also Chapter I, Section 4, for the precise terminology employed.) On the other hand, since, by virtue of their own nature, the objects concerned (A-connections solutions) are not distinguished insofar as they are “gauge equivalent;” one is led to consider not the initial solution space, as above, but, in effect, an appropriate “quotient” of it—the so-called “moduli space” of the solutions (A-connections) under consideration.

Suggested Citation

  • Anastasios Mallios, 2009. "Geometry of Yang–Mills A-Connections," Springer Books, in: Modern Differential Geometry in Gauge Theories, edition 1, chapter 3, pages 109-139, Springer.
  • Handle: RePEc:spr:sprchp:978-0-8176-4634-9_3
    DOI: 10.1007/978-0-8176-4634-9_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-8176-4634-9_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.