IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-8176-4634-9_2.html
   My bibliography  Save this book chapter

Moduli Spaces of A-Connections of Yang–Mills Fields

In: Modern Differential Geometry in Gauge Theories

Author

Listed:
  • Anastasios Mallios

    (University of Athens Panepistimioupolis, Department of Mathematics)

Abstract

Our purpose in this chapter is to expose, in the abstract language that we employ throughout this treatise, the fundamentals of the classical theory indicated by the subject in the title. Roughly speaking, we want to put into perspective the classical and physically, yet mathematically, important (!) theme of the so-called geometry of Yang–Mills equations. This was first advocated by I.M. Singer [1] (see also, for instance, M.F. Atiyah [1: p. 2]). Equivalently, one considers the corresponding space of solutions of the said equations, thus, by definition (see Chapt. I, Definitions 4.1 and 4.2), the space of the Yang–Mills A-connections. However, in view of the physical significance of the “gauge invariant (A-)connections” (see Atiyah’s phrasing in the epigraph above), the same space is finally divided out by the corresponding “gauge group,” so that it is, in effect, the resulting quotient space (“moduli space,” or even “orbit space”) that is under consideration.

Suggested Citation

  • Anastasios Mallios, 2009. "Moduli Spaces of A-Connections of Yang–Mills Fields," Springer Books, in: Modern Differential Geometry in Gauge Theories, edition 1, chapter 2, pages 79-107, Springer.
  • Handle: RePEc:spr:sprchp:978-0-8176-4634-9_2
    DOI: 10.1007/978-0-8176-4634-9_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-8176-4634-9_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.