Author
Listed:
- Gary F. Birkenmeier
(University of Louisiana at Lafayette, Department of Mathematics)
- Jae Keol Park
(Busan National University, Department of Mathematics)
- S. Tariq Rizvi
(The Ohio State University at Lima, Department of Mathematics)
Abstract
The existence and usefulness of the injective hull of a module is well known. In this chapter several hulls for a ring or a module which are essential extensions that are “minimal”, in some sense, with respect to being contained in some designated class of rings or modules are introduced. The definition of hulls includes most of the known hulls (e.g., injective, quasi-injective, continuous, quasi-continuous, etc.), as well as, some relatively newer ones (e.g., quasi-Baer, right FI-extending, right p.q.-Baer, idempotent closure, right duo). The transfer of information between these hulls and their base rings or modules is discussed. In Sects. 8.1 and 8.2, basic results and examples are provided. In Sect. 8.3, the maximal right ring of quotients for any ring is shown to enjoy a generalized extending property for a particular set of ideals. A consequence of this result is that every ring has a hull in the idempotent closure class of rings. For a semiprime ring, its idempotent closure hull coincides with the quasi-Baer ring hull and the FI-extending ring hull. In the fourth section, our focus is on modules. An in-depth-treatment is given to the known results on the existence of continuous hulls. Then an FI-extending hull is shown to exist for every finitely generated projective module over a semiprime ring. Finally, in contrast to essential extensions of extending modules, both the extending and the FI-extending properties are shown to transfer from a module to its rational hull.
Suggested Citation
Gary F. Birkenmeier & Jae Keol Park & S. Tariq Rizvi, 2013.
"Ring and Module Hulls,"
Springer Books, in: Extensions of Rings and Modules, edition 127, chapter 0, pages 267-326,
Springer.
Handle:
RePEc:spr:sprchp:978-0-387-92716-9_8
DOI: 10.1007/978-0-387-92716-9_8
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-387-92716-9_8. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.