IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-387-71607-7_3.html
   My bibliography  Save this book chapter

Interval And Ordinal Data

In: Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis

Author

Listed:
  • Yao Chen

    (University of Massachusetts)

  • Joe Zhu

    (Worcester Polytechnic Institute)

Abstract

The standard Data Envelopment Analysis (DEA) method requires that the values for all inputs and outputs are known exactly. When some inputs and output are imprecise data, such as interval or bounded data, ordinal data, and ratio bounded data, the resulting DEA model becomes a non-linear programming problem. Such a DEA model is called imprecise DEA (IDEA) in the literature. There are two approaches in dealing with such imprecise inputs and outputs. One approach uses scale transformations and variable alternations to convert the non-linear IDEA model into a linear program. The other identifies a set of exact data from the imprecise inputs and outputs and then uses the standard linear DEA model. This chapter focuses on the latter IDEA approach that uses the standard DEA model. This chapter shows that different results are obtained depending on whether the imprecise data are introduced directly into the multiplier or envelopment DEA model. Because the presence of imprecise data invalidates the linear duality between the multiplier and envelopment DEA models. The multiplier IDEA (MIDEA), developed based upon the multiplier DEA model, presents the best efficiency scenario whereas the envelopment IDEA (EIDEA), developed based upon the envelopment DEA model, presents the worst efficiency scenario. Weight restrictions are often redundant if they are added into MIDEA. Alternative optimal solutions on the imprecise data can be determined using the recent sensitivity analysis approach. The approaches are illustrated with both numerical and real world data sets.

Suggested Citation

  • Yao Chen & Joe Zhu, 2007. "Interval And Ordinal Data," Springer Books, in: Joe Zhu & Wade D. Cook (ed.), Modeling Data Irregularities and Structural Complexities in Data Envelopment Analysis, chapter 0, pages 35-62, Springer.
  • Handle: RePEc:spr:sprchp:978-0-387-71607-7_3
    DOI: 10.1007/978-0-387-71607-7_3
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-387-71607-7_3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.