IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-387-28359-3_4.html
   My bibliography  Save this book chapter

Extremal behavior of stochastic volatility models

In: Stochastic Finance

Author

Listed:
  • Vicky Fasen

    (Munich University of Technology, Center for Mathematical Sciences)

  • Claudia Klüppelberg

    (Munich University of Technology, Center for Mathematical Sciences)

  • Alexander Lindner

    (Munich University of Technology, Center for Mathematical Sciences)

Abstract

Summary Empirical volatility changes in time and exhibits tails, which are heavier than normal. Moreover, empirical volatility has — sometimes quite substantial — upwards jumps and clusters on high levels. We investigate classical and non-classical stochastic volatility models with respect to their extreme behavior. We show that classical stochastic volatility models driven by Brownian motion can model heavy tails, but obviously they are not able to model volatility jumps. Such phenomena can be modelled by Lévy driven volatility processes as, for instance, by Lévy driven Ornstein-Uhlenbeck models. They can capture heavy tails and volatility jumps. Also volatility clusters can be found in such models, provided the driving Lévy process has regularly varying tails. This results then in a volatility model with similarly heavy tails. As the last class of stochastic volatility models, we investigate a continuous time GARCH(1,1) model. Driven by an arbitrary Lévy process it exhibits regularly varying tails, volatility upwards jumps and clusters on high levels.

Suggested Citation

  • Vicky Fasen & Claudia Klüppelberg & Alexander Lindner, 2006. "Extremal behavior of stochastic volatility models," Springer Books, in: A. N. Shiryaev & M. R. Grossinho & P. E. Oliveira & M. L. Esquível (ed.), Stochastic Finance, chapter 4, pages 107-155, Springer.
  • Handle: RePEc:spr:sprchp:978-0-387-28359-3_4
    DOI: 10.1007/0-387-28359-5_4
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-387-28359-3_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.