IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-387-28356-2_16.html
   My bibliography  Save this book chapter

Rough Set Based Decision Support

In: Search Methodologies

Author

Listed:
  • Roman Slowinski

    (Poznan University of Technology, Institute of Computing Science
    Polish Academy of Sciences, Institute for Systems Research)

  • Salvatore Greco

    (University of Catania, Faculty of Economics)

  • Benedetto Matarazzo

    (University of Catania, Faculty of Economics)

Abstract

In this chapter, we are concerned with discovering knowledge from data. The aim is to find concise classification patterns that agree with situations that are described by the data. Such patterns are useful for explanation of the data and for the prediction of future situations. They are particularly useful in such decision problems as technical diagnostics, performance evaluation and risk assessment. The situations are described by a set of attributes, which we might also call properties, features, characteristics, etc. Such attributes may be concerned with either the input or output of a situation. These situations may refer to states, examples, etc. Within this chapter, we will refer to them as objects. The goal of the chapter is to present a knowledge discovery paradigm for multi-attribute and multicriteria decision making, which is based upon the concept of rough sets. Rough set theory was introduced by (Pawlak 1982, Pawlak 1991). Since then, it has often proved to be an excellent mathematical tool for the analysis of a vague description of objects. The adjective vague (referring to the quality of information) is concerned with inconsistency or ambiguity. The rough set philosophy is based on the assumption that with every object of the universe U there is associated a certain amount of information (data, knowledge). This information can be expressed by means of a number of attributes. The attributes describe the object. Objects which have the same description are said to be indiscernible (similar) with respect to the available information.

Suggested Citation

  • Roman Slowinski & Salvatore Greco & Benedetto Matarazzo, 2005. "Rough Set Based Decision Support," Springer Books, in: Edmund K. Burke & Graham Kendall (ed.), Search Methodologies, chapter 0, pages 475-527, Springer.
  • Handle: RePEc:spr:sprchp:978-0-387-28356-2_16
    DOI: 10.1007/0-387-28356-0_16
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-387-28356-2_16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.