IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-387-28014-1_14.html
   My bibliography  Save this book chapter

Screening the Input Variables to a Computer Model Via Analysis of Variance and Visualization

In: Screening

Author

Listed:
  • Matthias Schonlau

    (RAND Corporation)

  • William J. Welch

    (University of British Columbia, Department of Statistics)

Abstract

A nexperiment involving a complex computer model or code may have tens or even hundreds of input variables and, hence, the identification of the more important variables (screening) is often crucial. Methods are described for decomposing a complex input—output relationship into effects. Effects are more easily understood because each is due to only one or a small number of input variables. They can be assessed for importance either visually or via a functional analysis of variance. Effects are estimated from flexible approximations to the input—output relationships of the computer model. This allows complex nonlinear and interaction relationships to be identified. The methodology is demonstrated on a computer model of the relationship between environmental policy and the world economy.

Suggested Citation

  • Matthias Schonlau & William J. Welch, 2006. "Screening the Input Variables to a Computer Model Via Analysis of Variance and Visualization," Springer Books, in: Angela Dean & Susan Lewis (ed.), Screening, chapter 14, pages 308-327, Springer.
  • Handle: RePEc:spr:sprchp:978-0-387-28014-1_14
    DOI: 10.1007/0-387-28014-6_14
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-387-28014-1_14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.