IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-387-24555-3_5.html
   My bibliography  Save this book chapter

Bias in Estimating the Variance of K-Fold Cross-Validation

In: Statistical Modeling and Analysis for Complex Data Problems

Author

Listed:
  • Yoshua Bengio
  • Yves Grandvalet

Abstract

Most machine learning researchers perform quantitative experiments to estimate generalization error and compare the perforniance of different algorithms (in particular, their proposed algorithmn). In order to be able to draw statistically convincing conclusions, it is important to estimate the uncertainty of such estimates. This paper studies the very commonly used K-fold cross-validation estimator of generalization performance. The main theorem shows that there exists no universal (valid under all distributions) unbiased estimator of the variance of K-fold cross-validation, based on a single computation of the K-fold cross-validation estimator. The analysis that accompanies this result is based on the eigen-decomposition of the covariance matrix of errors, which has only three different eigenvalues corresponding to three degrees of freedom of the matrix and three components of the total variance. This analysis helps to better understand the nature of the problem and how it can make naive estimators (that don't take into account the error correlations due to the overlap between training and test sets) grossly underestimate variance. This is confirmed by numerical experiments in which the three components of the variance are compared when the difficulty of the learning problem and the number of folds are varied.

Suggested Citation

  • Yoshua Bengio & Yves Grandvalet, 2005. "Bias in Estimating the Variance of K-Fold Cross-Validation," Springer Books, in: Pierre Duchesne & Bruno RÉMillard (ed.), Statistical Modeling and Analysis for Complex Data Problems, chapter 0, pages 75-95, Springer.
  • Handle: RePEc:spr:sprchp:978-0-387-24555-3_5
    DOI: 10.1007/0-387-24555-3_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-387-24555-3_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.