Author
Abstract
It is natural and convenient to use matrix notation and terminology in defining and discussing certain functions of one or more variables. Earlier (in Chapter 14), matrix notation and terminology were used in defining and discussing linear, bilinear, and quadratic forms. In some cases, the use of matrix notation and terminology is essentially unavoidable—consider, for example, a case where the determinant of an m × m matrix is regarded as a function of its m2 elements. Matrix differentiation is the derivation of the first-, second-, or higher-order partial derivatives of a function or functions that have been expressed in terms of matrices. In deriving, presenting, and discussing the partial derivatives of such functions, it is natural, convenient, and in some cases necessary to employ matrix notation and terminology. Not only may the functions be expressed in terms of matrices, but the functions may comprise the elements of a vector or matrix, as would be the case if the elements of the inverse of an m×m (nonsingular) matrix A were regarded as functions of the elements of A. Matrix differentiation is of considerable importance in statistics. It is especially useful in connection with the maximum likelihood estimation of the parameters in a statistical model. The maximum likelihood estimates of the model’s parameters satisfy the equations (known as the likelihood equations) obtained by equating to zero the first-order partial derivatives (with respect to the model’s parameters) of the logarithm of the so-called likelihood function—in many important cases, the likelihood function involves the determinant and/or inverse of a matrix. Further, an approximation (suitable for large samples) to the variance-covariance matrix of the maximum likelihood estimators can be obtained by inverting the matrix (known as the information matrix) whose ij th element is–1 times the second-order partial derivative (with respect to the i th and j th parameters) of the logarithm of the likelihood function.
Suggested Citation
David A. Harville, 1997.
"Matrix Differentiation,"
Springer Books, in: Matrix Algebra From a Statistician’s Perspective, chapter 15, pages 289-335,
Springer.
Handle:
RePEc:spr:sprchp:978-0-387-22677-4_15
DOI: 10.1007/0-387-22677-X_15
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-387-22677-4_15. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.