IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-387-21789-5_1.html
   My bibliography  Save this book chapter

Reading Neural Encodings using Phase Space Methods

In: Perspectives and Problems in Nolinear Science

Author

Listed:
  • Henry D. I. Abarbanel
  • Evren Tumer

Abstract

Environmental signals sensed by nervous systems are often represented in spike trains carried from sensory neurons to higher neural functions where decisions and functional actions occur. Information about the environmental stimulus is contained (encoded) in the train of spikes. We show how to “read” the encoding using state space methods of nonlinear dynamics. We create a mapping from spike signals which are output from the neural processing system back to an estimate of the analog input signal. This mapping is realized locally in a reconstructed state space embodying both the dynamics of the source of the sensory signal and the dynamics of the neural circuit doing the processing. We explore this idea using a Hodgkin—Huxley conductance based neuron model and input from a low dimensional dynamical system, the Lorenz system. We show that one may accurately learn the dynamical input/output connection and estimate with high precision the details of the input signals from spike timing output alone. This form of “reading the neural code” has a focus on the neural circuitry as a dynamical system and emphasizes how one interprets the dynamical degrees of freedom in the neural circuit as they transform analog environmental information into spike trains.

Suggested Citation

  • Henry D. I. Abarbanel & Evren Tumer, 2003. "Reading Neural Encodings using Phase Space Methods," Springer Books, in: Ehud Kaplan & Jerrold E. Marsden & Katepalli R. Sreenivasan (ed.), Perspectives and Problems in Nolinear Science, chapter 1, pages 1-21, Springer.
  • Handle: RePEc:spr:sprchp:978-0-387-21789-5_1
    DOI: 10.1007/978-0-387-21789-5_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-387-21789-5_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.