IDEAS home Printed from https://ideas.repec.org/h/spr/sprchp/978-0-306-48517-6_7.html
   My bibliography  Save this book chapter

Finding Fibonacci in a Fractal

In: Applications of Fibonacci Numbers

Author

Listed:
  • Nathan C. Blecke
  • Kirsten Fleming
  • George William Grossman

Abstract

The focus of this paper is to further investigate properties of a two-dimensional fractal that involves counting and Fibonacci numbers. We determine the fractal dimension using the Box Counting Theorem and also the concept of similitude. We find affine transformations that generate some of the set of points that are in the fractal, which have the form Ax + b for a pair of two matrices A 1 and A 2 and some vectors x, b 1 and b 2. We denote these transformations S 1 and S 2. We find examples of the limit points generated, by taking repeated applications of the operators on some starting points (which are vertices of triangles) in some prescribed order. The fractal, denoted G, is the countable intersection of the countable union of a set of triangles. The fractal is shown to be a totally disconnected set.

Suggested Citation

  • Nathan C. Blecke & Kirsten Fleming & George William Grossman, 2004. "Finding Fibonacci in a Fractal," Springer Books, in: Frederic T. Howard (ed.), Applications of Fibonacci Numbers, pages 43-62, Springer.
  • Handle: RePEc:spr:sprchp:978-0-306-48517-6_7
    DOI: 10.1007/978-0-306-48517-6_7
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a
    for a similarly titled item that would be available.

    More about this item

    Keywords

    ;
    ;

    JEL classification:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:sprchp:978-0-306-48517-6_7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.