IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-319-91578-4_2.html
   My bibliography  Save this book chapter

Smooth Convex Optimization

In: Lectures on Convex Optimization

Author

Listed:
  • Yurii Nesterov

    (Catholic University of Louvain)

Abstract

In this chapter, we study the complexity of solving optimization problems formed by differentiable convex components. We start by establishing the main properties of such functions and deriving the lower complexity bounds, which are valid for all natural optimization methods. After that, we prove the worst-case performance guarantees for the Gradient Method. Since these bounds are quite far from the lower complexity bounds, we develop a special technique, based on the notion of estimating sequences, which allows us to justify the Fast Gradient Methods. These methods appear to be optimal for smooth convex problems. We also obtain performance guarantees for these methods targeting on generating points with small norm of the gradient. In order to treat problems with set constraints, we introduce the notion of a Gradient Mapping. This allows an automatic extension of methods for unconstrained minimization to the constrained case. In the last section, we consider methods for solving smooth optimization problems, defined by several functional components.

Suggested Citation

  • Yurii Nesterov, 2018. "Smooth Convex Optimization," Springer Optimization and Its Applications, in: Lectures on Convex Optimization, edition 2, chapter 0, pages 59-137, Springer.
  • Handle: RePEc:spr:spochp:978-3-319-91578-4_2
    DOI: 10.1007/978-3-319-91578-4_2
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vincenzo Bonifaci, 2021. "A Laplacian approach to $$\ell _1$$ ℓ 1 -norm minimization," Computational Optimization and Applications, Springer, vol. 79(2), pages 441-469, June.
    2. Yurii Nesterov, 2021. "Superfast Second-Order Methods for Unconstrained Convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 1-30, October.
    3. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 79(3), pages 681-715, July.
    4. Doikov, Nikita & Nesterov, Yurii, 2020. "Affine-invariant contracting-point methods for Convex Optimization," LIDAM Discussion Papers CORE 2020029, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Hui Zhang & Yu-Hong Dai & Lei Guo & Wei Peng, 2021. "Proximal-Like Incremental Aggregated Gradient Method with Linear Convergence Under Bregman Distance Growth Conditions," Mathematics of Operations Research, INFORMS, vol. 46(1), pages 61-81, February.
    6. Radu-Alexandru Dragomir & Alexandre d’Aspremont & Jérôme Bolte, 2021. "Quartic First-Order Methods for Low-Rank Minimization," Journal of Optimization Theory and Applications, Springer, vol. 189(2), pages 341-363, May.
    7. Yin Liu & Sam Davanloo Tajbakhsh, 2023. "Stochastic Composition Optimization of Functions Without Lipschitz Continuous Gradient," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 239-289, July.
    8. Mahesh Chandra Mukkamala & Jalal Fadili & Peter Ochs, 2022. "Global convergence of model function based Bregman proximal minimization algorithms," Journal of Global Optimization, Springer, vol. 83(4), pages 753-781, August.
    9. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    10. Nesterov, Yurii, 2022. "Quartic Regularity," LIDAM Discussion Papers CORE 2022001, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    11. Zhongming Wu & Chongshou Li & Min Li & Andrew Lim, 2021. "Inertial proximal gradient methods with Bregman regularization for a class of nonconvex optimization problems," Journal of Global Optimization, Springer, vol. 79(3), pages 617-644, March.
    12. Emanuel Laude & Peter Ochs & Daniel Cremers, 2020. "Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 724-761, March.
    13. Xin Jiang & Lieven Vandenberghe, 2023. "Bregman Three-Operator Splitting Methods," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 936-972, March.
    14. Alberto De Marchi & Andreas Themelis, 2022. "Proximal Gradient Algorithms Under Local Lipschitz Gradient Continuity," Journal of Optimization Theory and Applications, Springer, vol. 194(3), pages 771-794, September.
    15. Filip Hanzely & Peter Richtárik & Lin Xiao, 2021. "Accelerated Bregman proximal gradient methods for relatively smooth convex optimization," Computational Optimization and Applications, Springer, vol. 79(2), pages 405-440, June.
    16. Masoud Ahookhosh, 2019. "Accelerated first-order methods for large-scale convex optimization: nearly optimal complexity under strong convexity," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 89(3), pages 319-353, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-319-91578-4_2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.