Author
Abstract
A family R $$\mathcal {R}$$ of binary relations on a set X is called a relator on X, and the ordered pair X ( R ) = ( X , R ) $$ X(\mathcal {R})=(X, \mathcal {R})$$ is called a relator space. Sometimes, more generally, relators on X to Y may also be naturally considered. By using the following definitions, each minimal structure, generalized topology, or proper stack A $$\mathcal {A}$$ on X can be easily derived from the relator R A $$\mathcal {R}_{\mathcal {A}}$$ consisting of all Pervin’s preorders R A = A 2 ∪ ( A c × X ) $$R_{ A}= A^{2}\cup ( A^{c} \times X)$$ with A ∈ A $$A\in \mathcal {A}$$ . For any x ∈ X $$x\in X$$ and A , B ⊆ X $$A, B\subseteq X$$ , we write (1) A ∈ Int R ( B ) $$A\in \operatorname {\mathrm {Int}}_{\mathcal {R}}(B)$$ if R [ A ] ⊆ B $$R [ A ] \subseteq B$$ for some R ∈ R $$R\in \mathcal {R}$$ ; (2) A ∈ Cl R ( B ) $$A\in \operatorname {\mathrm {Cl}}_{\mathcal {R}}(B)$$ if R [ A ] ∩ B ≠ ∅ $$R [ A ] \cap B\ne \emptyset $$ for all R ∈ R $$R\in \mathcal {R}$$ ; (3) x ∈ int R ( B ) $$x\in \operatorname {\mathrm {int}}_{\mathcal {R}}(B)$$ if { x } ∈ Int R ( B ) $$\{x\}\in \operatorname {\mathrm {Int}}_{\mathcal {R}}(B)$$ ; (4) x ∈ cl R ( B ) $$x\in \operatorname {\mathrm {cl}}_{\mathcal {R}}(B)$$ if { x } ∈ Cl R ( B ) $$\{x\}\in \operatorname {\mathrm {Cl}}_{\mathcal {R}}(B)$$ ; (5) A ∈ τ R $$A\in \tau _{\scriptscriptstyle \mathcal {R}}$$ if A ∈ Int R ( A ) $$A\in \operatorname {\mathrm {Int}}_{\mathcal {R}}(A)$$ ; (6) A ∈ T R $$A\in \mathcal {T}_{\mathcal {R}}$$ if A ⊆ int R ( A ) $$A \subseteq \operatorname {\mathrm {int}}_{\mathcal {R}}(A)$$ ; (7) A ∈ E R $$A\in \mathcal {E}_{\mathcal {R}}$$ if int R ( A ) ≠ ∅ $$ \operatorname {\mathrm {int}}_{\mathcal {R}}(A)\ne \emptyset $$ ; (8) A ∈ N R $$A\in \mathcal {N}_{\mathcal {R}}$$ if cl R ( A ) ∉ E R $$ \operatorname {\mathrm {cl}}_{\mathcal {R}}(A)\notin \mathcal {E}_{\mathcal {R}}$$ . In our former papers, motivated by some standard definitions in topological spaces, for a subset A of the relator space X ( R ) $$X(\mathcal {R})$$ we, for instance, defined (a) A ∈ T R s $$A\in \mathcal {T}_{\mathcal {R}}^{s}$$ if A ⊆ cl R int R ( A ) $$A\subseteq \operatorname {\mathrm {cl}}_{\mathcal {R}}\left ( \operatorname {\mathrm {int}}_{\mathcal {R}}(A)\right )$$ ; (b) A ∈ T R p $$A\in \mathcal {T}_{\mathcal {R}}^{p}$$ if A ⊆ int R cl R ( A ) $$A\subseteq \operatorname {\mathrm {int}}_{\mathcal {R}}\left ( \operatorname {\mathrm {cl}}_{\mathcal {R}}(A)\right )$$ ; (c) A ∈ T R q $$A\in \mathcal {T}_{\mathcal {R}}^{q}$$ if V ⊆ A ⊆ cl R ( V ) $$V\subseteq A\subseteq \operatorname {\mathrm {cl}}_{\mathcal {R}}(V)$$ for some V ∈ T R $$V\in \mathcal {T}_{\mathcal {R}}$$ ; (d) A ∈ T R ps $$A\in \mathcal {T}_{\mathcal {R}}^{ps}$$ if A ⊆ V ⊆ cl R ( A ) $$A\subseteq V\subseteq \operatorname {\mathrm {cl}}_{\mathcal {R}}(A)$$ for some V ∈ T R $$V\in \mathcal {T}_{\mathcal {R}}$$ . Now, in addition to the above basic definitions, we shall also consider the following new definitions: (A) A ∈ τ R s $$A\in \tau _{\scriptscriptstyle \mathcal {R}}^{s}$$ if A ∈ Cl R Int R ( A ) $$A\in \operatorname {\mathrm {Cl}}_{\mathcal {R}} \left [ \operatorname {\mathrm {Int}}_{\mathcal {R}}(A) \right ]$$ ; (B) A ∈ τ R p $$A\in \tau _{\scriptscriptstyle \mathcal {R}}^{p}$$ if A ∈ Int R Cl R ( A ) $$A\in \operatorname {\mathrm {Int}}_{\mathcal {R}} \left [ \operatorname {\mathrm {Cl}}_{\mathcal {R}}(A) \right ]$$ ; (C) A ∈ τ R ms $$A\in \tau _{\scriptscriptstyle \mathcal {R}}^{ms}$$ if A ⊆ cl R Int R ( A ) $$A\subseteq \operatorname {\mathrm {cl}}_{\mathcal {R}} \left [ \operatorname {\mathrm {Int}}_{\mathcal {R}}(A) \right ]$$ ; (D) A ∈ τ R mp $$A\in \tau _{\scriptscriptstyle \mathcal {R}}^{mp}$$ if A ⊆ int R Cl R ( A ) $$A\subseteq \operatorname {\mathrm {int}}_{\mathcal {R}} \left [ \operatorname {\mathrm {Cl}}_{\mathcal {R}}(A) \right ]$$ ; (E) A ∈ T R ms $$A\in \mathcal {T}_{\mathcal {R}}^{ms}$$ if A ∈ Cl R int R ( A ) $$A\in \operatorname {\mathrm {Cl}}_{\mathcal {R}} \left ( \operatorname {\mathrm {int}}_{\mathcal {R}}(A) \right )$$ ; (F) A ∈ T R mp $$A\in \mathcal {T}_{\mathcal {R}}^{mp}$$ if A ∈ Int R cl R ( A ) $$A\in \operatorname {\mathrm {Int}}_{\mathcal {R}} \left ( \operatorname {\mathrm {cl}}_{\mathcal {R}}(A)\right )$$ ; (G) A ∈ τ R q $$A\in \tau _{\scriptscriptstyle \mathcal {R}}^{q}$$ if V ⊆ A ⊆ cl R ( V ) $$V\subseteq A\subseteq \operatorname {\mathrm {cl}}_{\mathcal {R}}(V)$$ for some V ∈ τ R $$V\in \tau _{\scriptscriptstyle \mathcal {R}}$$ ; (H) A ∈ τ R ps $$A\in \tau _{\scriptscriptstyle \mathcal {R}}^{ps}$$ if A ⊆ V ⊆ cl R ( A ) $$A\subseteq V\subseteq \operatorname {\mathrm {cl}}_{\mathcal {R}}(A)$$ for some V ∈ τ R $$V\in \tau _{\scriptscriptstyle \mathcal {R}}$$ ; ( I ) A ∈ E R q $$A\in \mathcal {E}_{\mathcal {R}}^{q}$$ if V ⊆ A ⊆ cl R ( V ) $$V\subseteq A\subseteq \operatorname {\mathrm {cl}}_{\mathcal {R}}(V)$$ for some V ∈ E R $$V\in \mathcal {E}_{\mathcal {R}}$$ ; (J ) A ∈ E R ps $$A\in \mathcal {E}_{\mathcal {R}}^{ps}$$ if A ⊆ V ⊆ cl R ( A ) $$A\subseteq V\subseteq \operatorname {\mathrm {cl}}_{\mathcal {R}}(A)$$ for some V ∈ E R $$V\in \mathcal {E}_{\mathcal {R}}$$ ; (K) A ∈ τ R wq $$A\in \tau _{\scriptscriptstyle \mathcal {R}}^{wq}$$ if V ⊆ A ∈ Cl R ( V ) $$V\subseteq A\in \operatorname {\mathrm {Cl}}_{\mathcal {R}}(V)$$ for some V ∈ τ R $$V\in \tau _{\scriptscriptstyle \mathcal {R}}$$ ; ( L) A ∈ τ R wps $$A\in \tau _{\scriptscriptstyle \mathcal {R}}^{wps}$$ if A ⊆ V ∈ Cl R ( A ) $$A\subseteq V\in \operatorname {\mathrm {Cl}}_{\mathcal {R}}(A)$$ for some V ∈ τ R $$V\in \tau _{\scriptscriptstyle \mathcal {R}}$$ ; (M) A ∈ T R wq $$A\in \mathcal {T}_{\mathcal {R}}^{wq}$$ if V ⊆ A ∈ Cl R ( V ) $$V\subseteq A\in \operatorname {\mathrm {Cl}}_{\mathcal {R}}(V)$$ for some V ∈ T R $$V\in \mathcal {T}_{\mathcal {R}}$$ ; (N) A ∈ T R wps $$A\in \mathcal {T}_{\mathcal {R}}^{wps}$$ if A ⊆ V ∈ Cl R ( A ) $$A\subseteq V\in \operatorname {\mathrm {Cl}}_{\mathcal {R}}(A)$$ for some V ∈ T R $$V\in \mathcal {T}_{\mathcal {R}}$$ ; (O) A ∈ E R wq $$A\in \mathcal {E}_{\mathcal {R}}^{wq}$$ if V ⊆ A ∈ Cl R ( V ) $$V\subseteq A\in \operatorname {\mathrm {Cl}}_{\mathcal {R}}(V)$$ for some V ∈ E R $$V\in \mathcal {E}_{\mathcal {R}}$$ ; (P) A ∈ E R wps $$A\in \mathcal {E}_{\mathcal {R}}^{wps}$$ if A ⊆ V ∈ Cl R ( A ) $$A\subseteq V\in \operatorname {\mathrm {Cl}}_{\mathcal {R}}(A)$$ for some V ∈ E R $$V\in \mathcal {E}_{\mathcal {R}}$$ . And, analogously to our former papers, we shall establish some characterizations and set theoretic properties of the families τ R κ $$\tau _{\scriptscriptstyle \mathcal {R}}^{\kappa }$$ , T R κ $$\mathcal {T}_{\mathcal {R}}^{\kappa }$$ and E R κ $$\mathcal {E}_{\mathcal {R}}^{\kappa }$$ with the operations κ $$\kappa $$ considered in definitions (A)–(P) .
Suggested Citation
Themistocles M. Rassias & Muwafaq M. Salih & Árpád Száz, 2025.
"Characterizations and Set Theoretic Properties of Some Generalized Open and Fat Sets in Relator Spaces,"
Springer Optimization and Its Applications, in: Panos M. Pardalos & Themistocles M. Rassias (ed.), Geometry and Non-Convex Optimization, pages 613-709,
Springer.
Handle:
RePEc:spr:spochp:978-3-031-87057-6_15
DOI: 10.1007/978-3-031-87057-6_15
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-031-87057-6_15. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.