IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-3-031-33183-1_5.html
   My bibliography  Save this book chapter

Predicting the Infection Level of COVID-19 Virus Using Normal Distribution-Based Approximation Model and PSO

In: Mathematical Modeling and Intelligent Control for Combating Pandemics

Author

Listed:
  • Samar Wazir

    (SEST, Jamia Hamdard)

  • Gautam Siddharth Kashyap

    (SEST, Jamia Hamdard)

  • Karan Malik

    (Arizona State University)

  • Alexander E. I. Brownlee

    (University of Stirling)

Abstract

The infectious disease brought on by COVID-19 is the pandemic that has put the lives and economy of the entire planet in jeopardy. The only alternatives available before the creation of a vaccine are how to take preventive measures and how to best employ the restricted medical equipment following patient need. Due to the lead durations in vaccine development, this will hold for potential pandemics in the future. An accurate estimation of the Infection Level (IL) in a particular patient is essential to determine if a patient needs to be in quarantine, isolation, or a ventilator. In the case of COVID-19, however, physical contact between a patient and a doctor or any other person is extremely dangerous; as a result, an accurate prediction model is essential for estimating the IL without any physical contact. In this study, innovative mathematical model for estimating the intensity of infection in the human body after a specified number of days since the first symptom appeared is proposed. Other factors taken into account by this model include age, gender, chronic illnesses, smoking, and Body Mass Index (BMI). The model is made to be flexible so that it may accept data input for any country and produce results based on the infection pattern of that nation. Additionally, by utilising the normal distribution, it may cumulatively display the outcome for the entire world. The predicted error’s Root Mean Square Error (RMSE) value falls between 0.9% and 2.4%. In addition, the authors suggested an evolutionary strategy called Particle Swarm Optimisation (PSO) on the dataset used to optimise the variables in the mathematical technique that depicts how an IL spreads through a community, and then they compared the outcomes with the mathematical model. Although both approaches are effective, the evolutionary strategy outperforms the mathematical model.

Suggested Citation

  • Samar Wazir & Gautam Siddharth Kashyap & Karan Malik & Alexander E. I. Brownlee, 2023. "Predicting the Infection Level of COVID-19 Virus Using Normal Distribution-Based Approximation Model and PSO," Springer Optimization and Its Applications, in: Zakia Hammouch & Mohamed Lahby & Dumitru Baleanu (ed.), Mathematical Modeling and Intelligent Control for Combating Pandemics, pages 75-91, Springer.
  • Handle: RePEc:spr:spochp:978-3-031-33183-1_5
    DOI: 10.1007/978-3-031-33183-1_5
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Narayan Tondapu, 2024. "Analyzing Currency Fluctuations: A Comparative Study of GARCH, EWMA, and IV Models for GBP/USD and EUR/GBP Pairs," Papers 2402.07435, arXiv.org.
    2. Narayan Tondapu, 2024. "Enhancing Mean-Reverting Time Series Prediction with Gaussian Processes: Functional and Augmented Data Structures in Financial Forecasting," Papers 2403.00796, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-3-031-33183-1_5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.