Author
Listed:
- Soumendra Nanda
(BAE Systems)
- David Kotz
(Dartmouth College)
Abstract
Centrality is a concept often used in social network analysis (SNA) to study different properties of networks that are modeled as graphs. Bridging nodes are strategically important nodes in a network graph that are located in between highly-connected regions. We developed a new centrality metric called Localized Bridging Centrality (LBC) to allow a user to identify and rank bridging nodes. LBC is a distributed variant of the Bridging Centrality (BC) metric and both these metrics are used to identify and rank bridging nodes. LBC is capable of identifying bridging nodes with an accuracy comparable to that of the BC metric for most networks, but is an order of magnitude less computationally expensive. As the name suggests, we use only local information from surrounding nodes to compute the LBC metric. Thus, our LBC metric is more suitable for distributed or parallel computation than the BC metric. We applied our LBC metric on several examples, including a real wireless mesh network. Our results indicate that the LBC metric is as powerful as the BC metric at identifying bridging nodes. We recently designed a new SNA metric that is also suitable for use in wireless mesh networks: the Localized Load-aware Bridging Centrality (LLBC) metric. The LLBC metric improves upon LBC by detecting critical bridging nodes while taking into account the actual traffic flows present in a communications network. We developed the SNA Plugin (SNAP) for the Optimized Link State Routing (OLSR) protocol to study the potential use of LBC and LLBC in improving multicast communications and our initial results are promising. In this chapter we present an introduction to SNA centrality metrics with a focus on our contributed metrics: LBC and LLBC. We also present some initial results from applying our metrics in real and emulated wireless mesh networks.
Suggested Citation
Soumendra Nanda & David Kotz, 2012.
"Localized Bridging Centrality,"
Springer Optimization and Its Applications, in: My T. Thai & Panos M. Pardalos (ed.), Handbook of Optimization in Complex Networks, chapter 0, pages 197-218,
Springer.
Handle:
RePEc:spr:spochp:978-1-4614-0857-4_7
DOI: 10.1007/978-1-4614-0857-4_7
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-1-4614-0857-4_7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.