IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-1-4419-9569-8_1.html
   My bibliography  Save this book chapter

Chebyshev Sets, Klee Sets, and Chebyshev Centers with Respect to Bregman Distances: Recent Results and Open Problems

In: Fixed-Point Algorithms for Inverse Problems in Science and Engineering

Author

Listed:
  • Heinz H. Bauschke

    (University of British Columbia)

  • Mason S. Macklem
  • Xianfu Wang

Abstract

In Euclidean spaces, the geometric notions of nearest-points map, farthest-points map, Chebyshev set, Klee set, and Chebyshev center are well known and well understood. Since early works going back to the 1930s, tremendous theoretical progress has been made, mostly by extending classical results from Euclidean space to Banach space settings. In all these results, the distance between points is induced by some underlying norm. Recently, these notions have been revisited from a different viewpoint in which the discrepancy between points is measured by Bregman distances induced by Legendre functions. The associated framework covers the well-known Kullback–Leibler divergence and the Itakura–Saito distance. In this survey, we review known results and we present new results on Klee sets and Chebyshev centers with respect to Bregman distances. Examples are provided and connections to recent work on Chebyshev functions are made. We also identify several intriguing open problems.

Suggested Citation

  • Heinz H. Bauschke & Mason S. Macklem & Xianfu Wang, 2011. "Chebyshev Sets, Klee Sets, and Chebyshev Centers with Respect to Bregman Distances: Recent Results and Open Problems," Springer Optimization and Its Applications, in: Heinz H. Bauschke & Regina S. Burachik & Patrick L. Combettes & Veit Elser & D. Russell Luke & Henry (ed.), Fixed-Point Algorithms for Inverse Problems in Science and Engineering, chapter 0, pages 1-21, Springer.
  • Handle: RePEc:spr:spochp:978-1-4419-9569-8_1
    DOI: 10.1007/978-1-4419-9569-8_1
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emanuel Laude & Peter Ochs & Daniel Cremers, 2020. "Bregman Proximal Mappings and Bregman–Moreau Envelopes Under Relative Prox-Regularity," Journal of Optimization Theory and Applications, Springer, vol. 184(3), pages 724-761, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-1-4419-9569-8_1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.