IDEAS home Printed from https://ideas.repec.org/h/spr/spochp/978-0-387-88630-5_8.html
   My bibliography  Save this book chapter

Neuroelectromagnetic Source Imaging of Brain Dynamics

In: Computational Neuroscience

Author

Listed:
  • Rey R. Ramírez

    (Medical College of Wisconsin and Froedtert Hospital)

  • David Wipf

    (University of California San Francisco)

  • Sylvain Baillet

    (Medical College of Wisconsin and Froedtert Hospital)

Abstract

Neuroelectromagnetic source imaging (NSI) is the scientific field devoted to modeling and estimating the spatiotemporal dynamics of the neuronal currents that generate the electric potentials and magnetic fields measured with electromagnetic (EM) recording technologies. Unlike functional magnetic resonance imaging (fMRI), which is indirectly related to neuroelectrical activity through neurovascular coupling [e.g., the blood oxygen level-dependent (BOLD) signal], EM measurements directly relate to the electrical activity of neuronal populations. In the past few decades, researchers have developed a great variety of source estimation techniques that are well informed by anatomy, neurophysiology, and the physics of volume conduction. State-of-the-art approaches can resolve many simultaneously active brain regions and their single trial dynamics and can even reveal the spatial extent of local cortical current flows.

Suggested Citation

  • Rey R. Ramírez & David Wipf & Sylvain Baillet, 2010. "Neuroelectromagnetic Source Imaging of Brain Dynamics," Springer Optimization and Its Applications, in: Wanpracha Chaovalitwongse & Panos M. Pardalos & Petros Xanthopoulos (ed.), Computational Neuroscience, chapter 0, pages 127-155, Springer.
  • Handle: RePEc:spr:spochp:978-0-387-88630-5_8
    DOI: 10.1007/978-0-387-88630-5_8
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yohan Attal & Denis Schwartz, 2013. "Assessment of Subcortical Source Localization Using Deep Brain Activity Imaging Model with Minimum Norm Operators: A MEG Study," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-14, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-88630-5_8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.