Author
Abstract
Previous work on the joint effects of vagueness in probabilities and outcomes in decisions about risky prospects has documented the decision-makers' (DMs) differential sensitivity to these two sources of imprecision. Budescu et al. [6] report two studies in which DMs provided certainty equivalents (CEs) for precise and vague prospects involving gains or losses. They found (a) higher concern for the precision of the outcomes than that of the probabilities, (b) vagueness seeking for positive outcomes, (c) vagueness avoidance for negative outcomes, and (d) stronger attitudes towards vague gains than for vague losses (see also, [13]). They proposed and tested a new generalization of prospect theory (PT) for options with vaguely specified attributes. The present work extends this model to the case of vague mixed prospects.We report results of a new experiment where 40 DMs used two methods (direct judgments of numerical CEs, and inferred CEs from a series of pairwise comparisons) of valuation of positive (gains), negative (losses), and mixed (gains and losses) prospects with vague outcomes. The results confirm the previous findings of vagueness seeking in the domain of gains, vagueness avoidance for losses, and stronger effects of vagueness in the domain of gains. The CEs of mixed prospects are also consistent with this pattern. The DMs overvalue prospects with vaguely specified gains and precise losses, and undervalue prospects with precisely specified gains and imprecise losses, relative to mixed prospects with precise parameters. Parameter estimates of the generalized model indicate that in the mixed cases the attitudes to vagueness in the two domains are slightly less pronounced, and they are treated more similarly to each other than in the strictly positive, or negative, cases.
Suggested Citation
David V. Budescu & Sara Templin, 2008.
"Valuation of Vague Prospects with Mixed Outcomes,"
Springer Optimization and Its Applications, in: Tamar Kugler & J. Cole Smith & Terry Connolly & Young-Jun Son (ed.), Decision Modeling and Behavior in Complex and Uncertain Environments, pages 253-275,
Springer.
Handle:
RePEc:spr:spochp:978-0-387-77131-1_11
DOI: 10.1007/978-0-387-77131-1_11
Download full text from publisher
To our knowledge, this item is not available for
download. To find whether it is available, there are three
options:
1. Check below whether another version of this item is available online.
2. Check on the provider's
web page
whether it is in fact available.
3. Perform a
for a similarly titled item that would be
available.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:spochp:978-0-387-77131-1_11. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.